skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Seibert, C"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The 2011 Mw9.0 Tohoku-Oki earthquake may be representative of “maximum”earthquakes: it ruptured the entire seismogenic depth range of the Japan megathrust, including the shallowest segment that reaches the trench where the displacement grew to 60 m and spawned a catastrophic tsunami. Models and direct seafloor measurements imply a comparably large initial relative motion and sustained long-period oscillations between sediment and water at the seafloor above the shallowest megathrust segment. This motion may develop enough shear to re-suspend sediment, but exclusively for the maximum earthquakes. This new co-seismic sediment-entrainment process should leave a recognizable sedimentary fingerprint of these earthquakes. Our physical experiments are testing effects of this shear between sediment and water and its interaction with high-frequency vertical shaking. We also investigate the impact of sediment properties and slope on the entrainment. We worked on several synthetic mixtures, defined according to the grain size distribution, clay mineralogy and water content with either freshwater or sea water. The grain size distribution is simplified but matches those of sediment cores from different subduction zones. For each mixture, we built matrices of the erosion rates according to the flow velocities, which shows the role of water content and vertical shaking. We have also identifi ed different mechanism during the runs:grain-by-grain or clasts entrainment, stripping, motion of the sediment interface, and formation of a dense sediment layer above the surface. These observations maybe recorded in the associated deposit, suggesting different fingerprinting by the tsunamigenic earthquakes depending on the characteristics of each subduction zone. 
    more » « less
    Free, publicly-accessible full text available December 9, 2025
  2. We present a high-resolution age-depth model for Site M0079, drilled in the Corinth rift, central Greece, during International Ocean Discovery Program Expedition 381. To establish the model, we use available age constrains derived from postcruise research, including ages from 14C analysis and visible tephra layers, together with published ages from U/Th analysis, magnetostratigraphy, and relative paleointensity data. The age-depth model is built for the entire length of the Site M0079 drill hole using a probabilistic modeling approach in OxCal software. The resulting age-depth model provides a robust chronological framework for sediment accumulation within the Gulf of Corinth, constraining the most recent phase of synrift deposition over the past 800,000 y. 
    more » « less
    Free, publicly-accessible full text available April 29, 2026
  3. During Expedition 386, two Giant Piston Corer (GPC) system deployments in the northern study area (Basin S3) of the southern Japan Trench (Figure F1) resulted in the recovery of cores from four holes at Site M0091 (Figure F2). The water depth was between 7802 and 7812 meters below sea level (mbsl). A breakdown of operational time is reported weekly instead of daily (see OPS in Supplementary material) due to decisions to move between sites based on weather and current conditions. Holes at Site M0091 were cored during Week 6 of the offshore phase. In total, 51.94 m of cores (Table T1) and 53.5 km of hydroacoustic profiles (see Hydroacoustics) were recovered and acquired, respectively, in the focus area. Further operations details, including winch log and inclinometer information, are found for all sites in Coring methodology in the Expedition 386 methods chapter (Strasser et al., 2023a) and associated files (see PALEOMAG and WINCHLOGS in Supplementary material). 
    more » « less
  4. During Expedition 386, one Giant Piston Corer (GPC) system deployment at Basin C/N1 in the boundary area between the central and northern Japan Trench (Figure F1) resulted in the recovery of cores from two holes at Site M0093 (Figure F2). The water depth was 7454 m below sea level (mbsl). A breakdown of operational time is reported weekly instead of daily (see OPS in Supplementary material) due to decisions to move between sites based on weather and current conditions. Holes at Site M0093 were cored during Week 7 of the offshore phase. In total, 26.91 m of cores (Table T1) and 3.89 km of hydroacoustic profiles (see Hydroacoustics) were recovered and acquired, respectively, in this focus area. Further operations details, including winch log and inclinometer information, are found for all sites in Coring methodology in the Expedition 386 methods chapter (Strasser et al., 2023a) and associated files (see PALEOMAG and WINCHLOGS in Supplementary material). 
    more » « less
  5. During Expedition 386, one Giant Piston Corer (GPC) system deployment at the boundary area between the central and northern Japan Trench (Figure F1) resulted in the recovery of cores from two holes at Site M0094 (Figure F2). The water depth was 7469 meters below sea level (mbsl). A breakdown of operational time is reported weekly instead of daily (see OPS in Supplementary materials) due to decisions to move between sites based on weather and current conditions. Holes at Site M0094 were acquired during Week 7 of the offshore phase. In total, 19.065 m of cores (Table T1) and 5.8 km of hydroacoustic profiles (see Hydroacoustics) were recovered and acquired in this focus area. Further operations details, including winch log and inclinometer information, are found for all sites in Coring methodology in the Expedition 386 methods chapter (Strasser et al., 2023a) and associated files (see PALEOMAG and WINCHLOGS in Supplementary materials). 
    more » « less
  6. During Expedition 386, a total of five Giant Piston Corer (GPC) system deployments in the central Japan Trench (Basin C2; Figure F1) resulted in the recovery of cores from six holes at Site M0083 and four at Site M0089 (Figure F2). The water depth ranged 7602–7626 meters below sea level (mbsl). A breakdown of operational time is reported weekly instead of daily (see OPS in Supplementary material) due to decisions to move between sites based on weather and current conditions. Sites M0083 and M0089 were cored during Weeks 2–4 of the offshore phase. In this focus area, a total of 154 m of cores (Table T1) were recovered. In addition, 121 km of hydroacoustic profiles (see Hydroacoustics) were acquired. Further operations details, including winch log and inclinometer information for all sites, are found in Coring methodology in the Expedition 386 methods chapter (Strasser, 2023a) and associated files (see PALEOMAG and WINCHLOGS in Supplementary material). 
    more » « less
  7. During Expedition 386, a total of five Giant Piston Corer (GPC) system deployments in the northern Japan Trench (Basin N3; Figure F1) resulted in the recovery of cores from six holes at Site M0084 and four at Site M0085 (Figure F2). The water depth was between 7590 and 7603 meters below sea level (mbsl). A breakdown of operational time is reported weekly instead of daily (see OPS in Supplementary material) due to decisions to move between sites based on weather and current conditions. Cores from Sites M0084 and M0085 were acquired during Weeks 2, 3, and 5 of the offshore phase. In total, 149.2 m of cores (Table T1) and 133 km of hydroacoustic profiles (see Hydroacoustics) were recovered and acquired, respectively, in this focus area. Further operations details, including winch log and inclinometer information, are found for all sites in Coring methodology in the Expedition 386 methods chapter (Strasser et al., 2023a) and in the associated files (see PALEOMAG and WINCHLOGS in Supplementary material). 
    more » « less
  8. During Expedition 386, two Giant Piston Corer (GPC) system deployments at this study area in the northern Japan Trench (Basin N2; Figure F1) resulted in the recovery of cores from four holes at Site M0088 (Figure F2). The water depth was between 7525 and 7550 meters below sea level (mbsl). A breakdown of operational time is reported weekly instead of daily (see OPS in Supplementary material) due to decisions to move between sites based on weather and current conditions. Holes at Site M0088 were cored during Week 4 of the offshore phase. In total, 56.205 m of cores (Table T1) and 49.7 km of hydroacoustic profiles (see Hydroacoustics) were recovered and acquired in this focus area. Further operations details, including winch log and inclinometer information, are found for all sites in Coring methodology in the Expedition 386 methods chapter (Strasser et al., 2023a) and associated files (see PALEOMAG and WINCHLOGS in Supplementary material). Note that inclinometer data were not properly recorded and are therefore not reported for Site M0088. 
    more » « less
  9. During Expedition 386, two Giant Piston Corer (GPC) system deployments in central Japan Trench Basin C1 (Figure F1) resulted in the recovery of cores from four holes at Site M0090 (Figure F2). The water depth was between 7445 and 7450 meters below sea level (mbsl). A breakdown of operational time is reported weekly instead of daily (see OPS in Supplementary material) due to decisions to move between sites based on weather and current conditions. Holes at Site M0090 were cored during Weeks 6 and 7 of the offshore phase. In total, 55.764 m of cores (Table T1) and 6.8 km of hydroacoustic profiles (see Hydroacoustics) were recovered and acquired, respectively, in this focus area. Further operations details, including winch log and inclinometer information, are found for all sites in Coring methodology in the Expedition 386 methods chapter (Strasser et al., 2023a) and associated files (see PALEOMAG and WINCHLOGS in Supplementary material). 
    more » « less